ACM Recommender Systems 2012: Most discussed, tweeted papers & presentations #RecSys2012. Blog reviews. Datasets. Social Graph. Links


Recsys 2012 – (Probably) Most commented and tweeted papers & presentations ACM Recommender Systems 2012 #recsys2012


Building Large-scale Real-world Recommender System-Tutorial

Xavier Amatriain @xamat @Netflix


Content, Connections, and Context

Daniel Tunkelang @dtunkelang @LinkedIn


Spotting Trends: The Wisdom of the Few   

Xiaolan Sha, Pietro Michiardi @michiard and Matteo Dell’Amico @matteodellamico @EURECOM

Daniele Quercia @danielequercia @Cambridge_Uni


CLiMF: Learning to Maximize Reciprocal Rank with Collaborative Less-is-More Filtering

Yue Shi and Linas Baltrunas at @Delft University of Technology

Alexandros Karatzoglou @telefonicaid


How users evaluate each other in Social Media

Jure Leskovec  @jure @Stanford University


Inspectability and Control in Social Recommenders

Bart Knijnenburg @usabart @UCIrvine


Mendeley Suggest: Engineering a Personalised Article Recommender System

Kris Jack @_krisjack @Mendeley


Pareto-Efficient Hybridization for Multi-Objective Recommender Systems

Marco Tulio Ribeiro and Adriano Veloso UF Minas Gerais

Anisio Lacerda and Nivio Ziviani @Zunnit Technologies


Tutorial on Conducting User Experiments in Recommender Systems

Bart Knijnenburg @usabart @UCIrvine


I’ve got 10 million songs in my pocket. Now what?

Paul Lamere @plamere @echonest


Online Controlled Experiments: Introduction, Learnings, and Humbling Statistics

Ron Kohavi @Microsoft


Ads and the City: Considering Geographic Distance Goes Long Way

Diego Saez-Trumper @univpompeufabra

Daniele Quercia @danielequercia and Jon Crowcroftx  @tforcworc @Cambridge_Uni


Enhancement of the Neutrality in Recommendation

Toshihiro Kamishima, Shotaro Akaho, and Hideki Asoh @AIST Tsukuba

Jun Sakuma @University of Tsukuba


Get Lost: GetLostBot! Annoying People with Serendipitous Recommendations

Ben Kirman @benki @University of Lincoln


Trustworthy Online Controlled Experiments: Five Puzzing Outcomes Explained

Ron Kohavi, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker, Ya Xu



Contextualizing Useful Recommendations

Francesco Ricci University of Bozen-Bolzano


Iterative Smoothing Technique for Improving Stability of Recommender Systems

Gediminas Adomavicius @University of Minnesota

Jingjing Zhang @Inidan University


Using Crowdsourcing to Compare Document Recommendation Strategies for Conversations

Maryam Habibi and Andrei Popescu-Belis @Idiap Research Institute


Insights on Social Recommender System

Wolney L. de Mello Neto @Vrije Universiteit Brussel

Ann Nowé @Vrije Universiteit Brussel



Blog Reviews of #RecSys2012


RecSys2012: A long (and likely biased) summary

Xavier Amatriain @xamat @Netflix


RecSys 2012: Beyond Five Stars

Daniel Tunkelang @dtunkelang @LinkedIn


RecSys 2012: few things remember

Daniele Quercia @danielequercia @Cambridge_Un


Recsys 20102 Conference- A personal summary

Marcel Blattner @FFHS



Most mentioned twitter accounts during #RecSys12


Twitter interactions and Social Graph During #RecSys2012



Systems, Datasets, and Toolsets at #RecSys2012


Clique: Graph & Network Analysis Cluster

Padraig Cunningham @PadraigC @University College Dublin


Matchbox: Large Scale Bayesian Recommendations -Microsoft Research

David Stern, Ralf Herbrich, Thore Graepel @MSFTResearch


Infer.NET framework for running Bayesian inference in graphical models



KONECT – The Koblenz Dataset Collection

Dr. Jérôme Kunegis @kunegis @University of Koblenz- Landau


HetRec 2011 Data Sets | GroupLens Research

GroupLens @University of Minnesota and IR Group @uam_madrid


LensKit Recommender Framework — LensKit Recommender Implementation

GroupLens @University of Minnesota


Movielens- helping you find the right movies

GroupLens @University of Minnesota


myPersonality Project: Research, Datasets and Papers on personality

Michal Kosinski and David Stillwell Psychometrics Centre @Cambridge_Uni



Other papers and presentations #RecSys2012 mentioned and discussed


Case Study Evaluation of Mahout as a Recommender Platform

Carlos E. Seminario and David C. Wilson @University of North Carolina Charlotte


Evaluating Various Implicit Factors in E-commerce

Ladislav Peska and Peter Vojtas @Charles University Prague


Recommender Systems Evaluation: A 3D Benchmark

Alan Said @alansaid @TU Berlin

Domonkos Tikk and Klara Stumpf @Gravity Berlin

Yue Shi and Martha Larson @TU-Delft

Paolo Cremonesi @Politecnico di Milano


On the use of Weighted Mean Absolute Error in Recommender Systems

S. Cleger-Tamayo @Universidad de Holguín

J.M. Fernández-Luna & J.F. Huete @UGR Universidad de Granada, Spain


How Similar is Rating Similarity to Content Similarity?

Osman Ba¸skaya and Tevfik Aytekin @Bahçe¸sehir University


Modeling Difficulty in Recommender Systems

Benjamin Kille and Sahin Albayrak @DAI-Lab Technische Universit at Berlin


Consumer Science and Product Development at Netflix

Rochelle King @Netlix

Matt Marenghi @mattmarenghi @Netflix


Aggregating Content and Network Information to Curate Twitter User Lists

Derek Greene, Gavin Sheridan, Barry Smyth @University College Dublin

Padraig Cunningham @Storyful


Online Dating Recommender Systems

Dr. Jérôme Kunegis @kunegis Gerd Gröner @gerdgroener & Thomas Gottron @tgottron

WeST – Institute for Web Science and Technologies,  @University of Koblenz- Landau


Toward a New Protocol to Evaluate Recommender Systems

Frank Meyer, Françoise Fessant, and Fabrice Clérot @OrangeLabs

Eric Gaussier @University of Grenoble


Using Graph Partitioning Techniques for Neighbour Selection in User-Based Collaborative Filtering

Alejandro Bellogín @abellogin @uam_madrid

javier Parapar @jparapar @University of Coruña


Rate it Again: Increasing Recommendation Accuracy by User re-Rating

Xavier Amatriain @xamat @telefonicaid (now @Netflix)

Josep M. Pujol and Nava Tintarev @telefonicaid


User Rating to Profile Health Demo at RecSys2012

Dr. Neal Lathia @neal_lathia  @Cambridge_Uni


Recommendations and Discovery at StumbleUpon

Sumanth Kolar @_5K @StumbleUpon


Hadoop and Recommendations @LinkedIn

Abhishek Gupta @abhishek85gupta  and Adil Aijaz @adilaijaz @LinkedIn


Predicting Personality with Twitter

Daniele Quercia @danielequercia @Cambridge_Uni

David Stillwell @david_stillwell @University of Nottingham

Michal Kosinskiy @michalkosinski @Cambridge_Uni

Jon Crowcroftx  @tforcworc @Cambridge_Uni


The Personality of Popular Facebook Users

Daniele Quercia @danielequercia @Cambridge_Uni

Renaud Lambiottez  @RenaudLambiotte @Imperial College

David Stillwell @david_stillwell @University of Nottingham

Michal Kosinskiy @michalkosinski @Cambridge_Uni

Jon Crowcroftx  @tforcworc @Cambridge_Uni


Mendeley’s Data and Perspectives on Data Challenges

Kris Jack @_krisjack @Mendeley


What is so special about music?

Paul Lamere @plamere @echonest


Dating Sites and the Split-complex Numbers

Dr. Jérôme Kunegis @kunegis @University of Koblenz- Landau


Explaining the user experience of recommender systems

Bart Knijnenburg @usabart @UCIrvine

Z. Gantner University of Hildesheim

A.  Soncu European @Microsoft Innovation Center

C. Newell @BBC Research & Development


Effects of Online Recommendations on Consumers’ Willingness to Pay

Gediminas Adomavicius & Shawn Curley @University of Minnesota

Jesse Bockstedt @University of Arizona

Jingjing Zhang @Indiana University


Decision-Making in Recommender Systems: The Role of User’s Goals and Bounded Resources

Paolo Cremonesi & Franca Garzotto @Politecnico di Milano

Antonio Donatacci & Roberto Turrin @Moviri


Eliciting Stakeholder Preferences for Requirements Prioritization

Alexander Felfernig, Gerald Ninaus & Florian Reinfrank @Graz University


Recommendation systems in the scope of opinion formation: a model

Marcel Blattner @University of Applied Sciences FFHSRegensdorf

Matus Medo  @University of Fribourg


The Effect of Sensitivity Analysis on the Usage of Recommender Systems

Martina Maida, Konradin Maier & Nikolaus Obwegeser @Vienna University of Economics and Business


Recommending Personalized Query Revisions

Henry Blanco & Francesco Ricci @Free University of Bolzano

Derek Bridge @ University College Cork



Presentations posted and tagged as #RecSys2012


The Recsys2012 Challenges


The Official Recommender Systems Challenge 2012 Webpage


The Limerick 2012 Challenge

Winner Dr. Neal Lathia @neal_lathia @Cambridge_Uni


The Official Stuff

Proceedings of the 2012 ACM Conference on Recommender Systems 2012-09-09

Pádraig Cunningham, Neil Hurley, Ido Guy, Sarabjot, Singh Anand @ACM





One comment:

  • Yet Another RecSys 2012 Summary « alan said on September 24, 2012 at 1:11 pm

    […] Data Science London –  Recsys 2012 – (Probably) Most commented and tweeted papers & presentations ACM Recommender Sys… […]

Leave a Comment:

Data Science London © 2018